ANR-MIAI in contracts (2022-05-09)
Andreas Kalaitzakis, Jérôme Euzenat, À quoi sert la spécialisation en évolution culturelle de la connaissance?, in: Maxime Morge (éd), Actes 31e journées francophones sur Systèmes multi-agent (JFSMA), Strasbourg (FR), 2023
Des agents peuvent faire évoluer leurs ontologies en accomplissant conjointement une tâche. Nous considérons un ensemble de tâches dont chaque agent ne considère qu'une partie. Nous supposons que moins un agent considère de tâches, plus la précision de sa meilleure tâche sera élevée. Pour le vérifier, nous simulons différentes populations considérant un nombre de tâches croissant. De manière contre-intuitive, l'hypothèse n'est pas vérifiée. D'une part, lorsque les agents ont une mémoire illimitée, plus un agent considère de tâches, plus il est précis. D'autre part, lorsque les agents ont une mémoire limitée, les objectifs de maximiser la précision de leur meilleures tâches et de s'accorder entre eux sont mutuellement exclusifs. Lorsque les sociétés favorisent la spécialisation, les agents n'améliorent pas leur précision. Cependant, ces agents décideront plus souvent en fonction de leurs meilleures tâches, améliorant ainsi la performance de leur société.
Evolution culturelle de la connaissance, Simulation multi-agents, Spécialisation des agents
Yasser Bourahla, Manuel Atencia, Jérôme Euzenat, Knowledge transmission and improvement across generations do not need strong selection, in: Piotr Faliszewski, Viviana Mascardi, Catherine Pelachaud, Matthew Taylor (eds), Proc. 21st ACM international conference on Autonomous Agents and Multi-Agent Systems (AAMAS), (Online), pp163-171, 2022
Agents have been used for simulating cultural evolution and cultural evolution can be used as a model for artificial agents. Previous results have shown that horizontal, or intra-generation, knowledge transmission allows agents to improve the quality of their knowledge to a certain level. Moreover, variation generated through vertical, or inter-generation, transmission allows agents to exceed that level. Such results were obtained under specific conditions such as the drastic selection of agents allowed to transmit their knowledge, seeding the process with correct knowledge or introducing artificial noise during transmission. Here, we question the necessity of such measures and study their impact on the quality of transmitted knowledge. For that purpose, we combine the settings of two previous experiments and relax these conditions (no strong selection of teachers, no fully correct seed, no introduction of artificial noise). The rationale is that if interactions lead agents to improve their overall knowledge quality, this should be sufficient to ensure correct knowledge transmission, and that transmission mechanisms are sufficiently imperfect to produce variation. In this setting, we confirm that vertical transmission improves on horizontal transmission even without drastic selection and oriented learning. We also show that horizontal transmission is able to compensate for the lack of parent selection if it is maintained for long enough. This means that it is not necessary to take the most successful agents as teachers, neither in vertical nor horizontal transmission, to cumulatively improve knowledge.
Ontology, Multi-agent social simulation, Multi-agent learning, Knowledge diversity
Yasser Bourahla, Manuel Atencia, Jérôme Euzenat, Transmission de connaissances et sélection, in: Valérie Camps (éd), Actes 30e journées francophones sur Systèmes multi-agent (JFSMA), Saint-Étienne (FR), pp63-72, 2022
Les agents peuvent être utilisés pour simuler l'évolution culturelle et l'évolution culturelle peut être utilisée comme modèle pour les agents artificiels. Des expériences ont montré que la transmission intragénérationnelle des connaissances permet aux agents d'en améliorer la qualité. De plus, sa transmission intergénérationnelle permet de dépasser ce niveau. Ces résultats ont été obtenus dans des conditions particulières: sélection drastique des agents transmetant leurs connaissances, initialisation avec des connaissances correctes ou introduction de bruit lors de la transmission. Afin d'étudier l'impact de ces mesures sur la qualité de la connaissance transmise, nous combinons les paramètres de deux expériences précédentes et relâchons ces conditions. Ce dispositif confirme que la transmission verticale permet d'améliorer la qualité de la connaissance obtenue par transmission horizontale même sans sélection drastique et apprentissage orienté. Il montre également qu'une transmission intragénérationnelle suffisante peut compenser l'absence de sélection parentale.
Simulation sociale multi-agents, Évolution culturelle, Transmission des connaissances, Génération d'agents, Évolution culturelle des connaissances
Yasser Bourahla, Jérôme David, Jérôme Euzenat, Meryem Naciri, Measuring and controlling knowledge diversity, in: Tiago Prince Sales, Maria Hedblom, He Tan, Lucía Gómez Álvarez, Rafael Peñaloza, Srdjan Vesic (eds), Proc. 1st JOWO workshop on formal models of knowledge diversity (FMKD), Jönköping (SE), 2022
Assessing knowledge diversity may be useful for many purposes. In particular, it is necessary to measure diversity in order to understand how it arises or is preserved; it is also necessary to control it in order to measure its effects. Here we consider measuring knowledge diversity using two components: (a) a diversity measure taking advantage of (b) a knowledge difference measure. We present the general principles and various candidates for such components. We discuss how these measures may be used to generate populations of agents with controlled levels of knowledge diversity.
Knowledge diversity, Diversity measure, Ontology dissimilarity, Diversity control, Entropy
Jérôme Euzenat, Beyond reproduction, experiments want to be understood, in: Proc. 2nd workshop on Scientific knowledge: representation, discovery, and assessment (SciK), Lyon (FR), pp774-778, 2022
The content of experiments must be semantically described. This topic has already been largely covered. However, some neglected benefits of such an approach provide more arguments in favour of scientific knowledge graphs. Beyond being searchable through flat metadata, a knowledge graph of experiment descriptions may be able to provide answers to scientific and methodological questions. This includes identifying non experimented conditions or retrieving specific techniques used in experiments. In turn, this is useful for researchers as this information can be used for repurposing experiments, checking claimed results or performing meta-analyses.
e-science, scientific knowledge graphs, semantic experiment description, semantic technologies
Line van den Berg, Manuel Atencia, Jérôme Euzenat, Raising awareness without disclosing truth, Annals of mathematics and artificial intelligence, 2022
Agents use their own vocabularies to reason and talk about the world. Public signature awareness is satisfied if agents are aware of the vocabularies, or signatures, used by all agents they may, eventually, interact with. Multi-agent modal logics and in particular Dynamic Epistemic Logic rely on public signature awareness for modeling information flow in multi-agent systems. However, this assumption is not desirable for dynamic and open multi-agent systems because (1) it prevents agents to use unique signatures other agents are unaware of, (2) it prevents agents to openly extend their signatures when encountering new information, and (3) it requires that all future knowledge and beliefs of agents are bounded by the current state. We propose a new semantics for awareness that enables us to drop public signature awareness. This semantics is based on partial valuation functions and weakly reflexive relations. Dynamics for raising public and private awareness are then defined in such a way as to differentiate between becoming aware of a proposition and learning its truth value. With this, we show that knowledge and beliefs are not affected through the raising operations.
Awareness, Raising awareness, Dynamic epistemic logic, Partial valuations, Multi-agent systems
Yasser Bourahla, Manuel Atencia, Jérôme Euzenat, Knowledge improvement and diversity under interaction-driven adaptation of learned ontologies, in: Ulle Endriss, Ann Nowé, Frank Dignum, Alessio Lomuscio (eds), Proc. 20th ACM international conference on Autonomous Agents and Multi-Agent Systems (AAMAS), London (UK), pp242-250, 2021
When agents independently learn knowledge, such as ontologies, about their environment, it may be diverse, incorrect or incomplete. This knowledge heterogeneity could lead agents to disagree, thus hindering their cooperation. Existing approaches usually deal with this interaction problem by relating ontologies, without modifying them, or, on the contrary, by focusing on building common knowledge. Here, we consider agents adapting ontologies learned from the environment in order to agree with each other when cooperating. In this scenario, fundamental questions arise: Do they achieve successful interaction? Can this process improve knowledge correctness? Do all agents end up with the same ontology? To answer these questions, we design a two-stage experiment. First, agents learn to take decisions about the environment by classifying objects and the learned classifiers are turned into ontologies. In the second stage, agents interact with each other to agree on the decisions to take and modify their ontologies accordingly. We show that agents indeed reduce interaction failure, most of the time they improve the accuracy of their knowledge about the environment, and they do not necessarily opt for the same ontology.
Ontology, Multi-agent social simulation, Multi-agent learning, Knowledge diversity
Line van den Berg, Manuel Atencia, Jérôme Euzenat, A logical model for the ontology alignment repair game, Autonomous agents and multi-agent systems 35(2):32, 2021
Ontology alignments enable agents to communicate while preserving heterogeneity in their knowledge. Alignments may not be provided as input and should be able to evolve when communication fails or when new information contradicting the alignment is acquired. The Alignment Repair Game (ARG) has been proposed for agents to simultaneously communicate and repair their alignments through adaptation operators when communication failures occur. ARG has been evaluated experimentally and the experiments showed that agents converge towards successful communication and improve their alignments. However, whether the adaptation operators are formally correct, complete or redundant could not be established by experiments. We introduce a logical model, Dynamic Epistemic Ontology Logic (DEOL), that enables us to answer these questions. This framework allows us (1) to express the ontologies and alignments used via a faithful translation from ARG to DEOL, (2) to model the ARG adaptation operators as dynamic modalities and (3) to formally define and establish the correctness, partial redundancy and incompleteness of the adaptation operators in ARG.
The refine operator is not partially redundant with respect to Agent b (because it has no way to detect the incoherence from the announcement alone).
Ontology alignment, Alignment repair, Multi-agent systems, Agent communication, Dynamic Epistemic Logic
Line van den Berg, Cultural knowledge evolution in dynamic epistemic logic, Thèse de mathématiques-informatique, Université de Grenoble, Grenoble (FR), October 2021
To reason and talk about the world, agents may use their own distinct vocabularies, structured into knowledge representations, also called ontologies. In order to communicate, they use alignments: translations between terms of their ontologies. aHowever, ontologies may change, requiring their alignments to evolve accordingly. Experimental cultural evolution offers a framework to study the mechanisms of their knowledge evolution. It has been applied to the evolution of alignments in the Alignment Repair Game (ARG). Experiments have shown that, through ARG, agents improve their alignments and reach successful communication. Yet, these experiments are not sufficient to understand the formal properties of cultural knowledge evolution. This thesis bridges experimental cultural knowledge evolution with a theoretical model of cultural knowledge evolution in logic. This is achieved by introducing Dynamic Epistemic Ontology Logic and defining a faithful translation of ARG in DEOL that (a) encodes the ontologies, (b) maps agents' ontologies and alignments to knowledge and beliefs, and (c) captures the adaptation operators through announcements and conservative upgrades. This model shows that all but one adaptation operator are correct, they are incomplete and some are partially redundant. Three differences between the ARG agents and their logical model explain these results, leading to an independent model of awareness based on partial valuations and weakly reflexive relations. An alternative model of ARG is then defined under which the formal properties are re-examined, showing that this model is closer to the original game. This is a first step towards defining a theoretical model of cultural knowledge evolution.
Dynamic epistemic logic, Ontology alignments, Cultural knowledge evolution
Line van den Berg, Manuel Atencia, Jérôme Euzenat, Agent ontology alignment repair through dynamic epistemic logic, in: Bo An, Neil Yorke-Smith, Amal El Fallah Seghrouchni, Gita Sukthankar (eds), Proc. 19th ACM international conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Auckland (NZ), pp1422-1430, 2020
Ontology alignments enable agents to communicate while preserving heterogeneity in their information. Alignments may not be provided as input and should be able to evolve when communication fails or when new information contradicting the alignment is acquired. In the Alignment Repair Game (ARG) this evolution is achieved via adaptation operators. ARG was evaluated experimentally and the experiments showed that agents converge towards successful communication and improve their alignments. However, whether the adaptation operators are formally correct, complete or redundant is still an open question. In this paper, we introduce a formal framework based on Dynamic Epistemic Logic that allows us to answer this question. This framework allows us (1) to express the ontologies and alignments used, (2) to model the ARG adaptation operators through announcements and conservative upgrades and (3) to formally establish the correctness, partial redundancy and incompleteness of the adaptation operators in ARG.
The refine operator is not partially redundant with respect to Agent b (because it has no way to detect the incoherence from the announcement alone).
Ontology alignment, Alignment repair, Agent communication, Dynamic Epistemic Logic
Line van den Berg, Manuel Atencia, Jérôme Euzenat, Unawareness in multi-agent systems with partial valuations, in: Proc. 10th AAMAS workshop on Logical Aspects of Multi-Agent Systems (LAMAS), Auckland (NZ), 2020
Public signature awareness is satisfied if agents are aware of the vocabulary, propositions, used by other agents to think and talk about the world. However, assuming that agents are fully aware of each other's signatures prevents them to adapt their vocabularies to newly gained information, from the environment or learned through agent communication. Therefore this is not realistic for open multi-agent systems. We propose a novel way to model awareness with partial valuations that drops public signature awareness and can model agent signature unawareness, and we give a first view on defining the dynamics of raising and forgetting awareness on this framework.
Awareness, Dynamic Epistemic Logic, Partial valuations, Multi-agent systems
Line van den Berg, Forgetting agent awareness: a partial semantics approach, in: Proc. 4th conference on Women in Logic workshop (WiL), Paris (FR), (Sandra Alves, Sandra Kiefer, Ana Sokolova (eds), Proc. 4th conference on Women in Logic workshop (WiL), Paris (FR), 2020), pp18-21, 2020
Partial Dynamic Epistemic Logic allows agents to have different knowledge representations about the world through agent awareness. Agents use their own vocabularies to reason and talk about the world and raise their awareness when confronted with new vocabulary. Through raising awareness the vocabularies of agents are extended, suggesting there is a dual, inverse operator for forgetting awareness that decreases vocabularies. In this paper, we discuss such an operator. Unlike raising awareness, this operator may induce an abstraction on models that removes evidence while preserving conclusions. This is useful to better understand how agents with different knowledge representations communicate with each other, as they may forget the justifications that led them to their conclusions.