CSF-unirio in contracts (2022-05-09)
Jomar da Silva, Kate Revoredo, Fernanda Araujo Baião, Jérôme Euzenat, Alin: improving interactive ontology matching by interactively revising mapping suggestions, Knowledge engineering review 35:e1, 2020
Ontology matching aims at discovering mappings between the entities of two ontologies. It plays an important role in the integration of heterogeneous data sources that are described by ontologies. Interactive ontology matching involves domain experts in the matching process. In some approaches, the expert provides feedback about mappings between ontology entities, i.e., these approaches select mappings to present to the expert who replies which of them should be accepted or rejected, so taking advantage of the knowledge of domain experts towards finding an alignment. In this paper, we present Alin, an interactive ontology matching approach which uses expert feedback not only to approve or reject selected mappings, but also to dynamically improve the set of selected mappings, i.e., to interactively include and to exclude mappings from it. This additional use for expert answers aims at increasing in the benefit brought by each expert answer. For this purpose, Alin uses four techniques. Two techniques were used in previous versions of Alin to dynamically select concept and attribute mappings. Two new techniques are introduced in this paper: one to dynamically select relationship mappings and another one to dynamically reject inconsistent selected mappings using anti-patterns. We compared Alin with state-of-the-art tools, showing that it generates alignment of comparable quality.
Ontology matching, WordNet, Interactive ontology matching, Ontology alignment, Interactive ontology alignment
Jomar da Silva, Kate Revoredo, Fernanda Araujo Baião, Jérôme Euzenat, Interactive ontology matching: using expert feedback to select attribute mappings, in: Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Michelle Cheatham, Oktie Hassanzadeh (eds), Proc. 13th ISWC workshop on ontology matching (OM), Monterey (CA US), pp25-36, 2018
Interactive Ontology Matching considers the participation of domain experts during the matching process of two ontologies. An important step of this process is the selection of mappings to submit to the expert. These mappings can be between concepts, attributes or relationships of the ontologies. Existing approaches define the set of mapping suggestions only in the beginning of the process before expert involvement. In previous work, we proposed an approach to refine the set of mapping suggestions after each expert feedback, benefiting from the expert feedback to form a set of mapping suggestions of better quality. In this approach, only concept mappings were considered during the refinement. In this paper, we show a new approach to evaluate the benefit of also considering attribute mappings during the interactive phase of the process. The approach was evaluated using the OAEI conference data set, which showed an increase in recall without sacrificing precision. The approach was compared with the state-of-the-art, showing that the approach has generated alignment with state-of-the-art quality.
Ontology matching, WordNet, Interactive ontology matching, Ontology alignment, Interactive ontology alignment
Jomar da Silva, Fernanda Araujo Baião, Kate Revoredo, Jérôme Euzenat, Semantic interactive ontology matching: synergistic combination of techniques to improve the set of candidate correspondences, in: Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Michelle Cheatham, Oktie Hassanzadeh (eds), Proc. 12th ISWC workshop on ontology matching (OM), Wien (AT), pp13-24, 2017
Ontology Matching is the task of finding a set of entity correspondences between a pair of ontologies, i.e. an alignment. It has been receiving a lot of attention due to its broad applications. Many techniques have been proposed, among which the ones applying interactive strategies. An interactive ontology matching strategy uses expert knowledge towards improving the quality of the final alignment. When these strategies are based on the expert feedback to validate correspondences, it is important to establish criteria for selecting the set of correspondences to be shown to the expert. A bad definition of this set can prevent the algorithm from finding the right alignment or it can delay convergence. In this work we present techniques which, when used simultaneously, improve the set of candidate correspondences. These techniques are incorporated in an interactive ontology matching approach, called ALINSyn. Experiments successfully show the potential of our proposal.
Ontology matching, WordNet, Interactive ontology matching, Ontology alignment, Interactive ontology alignment